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Status: This is hopefully the first step in a larger project.

Aim: Renew the perspectives of lattices, geometry and logic into the
study of operator algebras, particularly subfactors.

History: From 1930-1970

vN, Stone: modern spectral theorem

Stone: representations of Boolean algebras

B, Menger: finite-dimensional lattice-theoretic projective geometry

B, vN: logic of QM

vN: continuous geometry, rep’s of complemented modular lattices

M, vN: rings of operators I, II, III, IV

Frink, Prenowtiz: infinite-dim lattice-theoretic projective geometry

Kaplansky: complete modular ortholattice is a continuous geometry

Gleason: lattice theoretic view of states

Dye: morphisms of vN algebras via projections

Varadarajan: geometric quantum mechanics

various: development of OMLs, relations to vN algebras

From the 1970’s — today, this perspective has receded.
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Background

Definition B(H) is all bounded operators on a Hilbert space H.

Definition A vN-algebra M is a ∗-subalgebra of B(H) closed in the WOT.

Definition An element p in M is a projection if p = p2
= p∗.

Definition P(M) is the projections of M with p ≤ q iff pq = p = qp.

Definition M is a factor if the center of P(M) is {0, 1}.

Definition An inclusion N ≤M of factors is called a subfactor.

Theorem P(M) is a complete orthomodular lattice (oml).

Theorem M is determined up to Jordan isomorphism by P(M).

Theorem A factor M has a unique dimension function D ∶ P(M) → [0,∞].

Factors are given types In, I∞, II1, II∞, III depending on the range of D which is
one of {0, 1, . . . , n},N ∪ {∞}, [0, 1], [0,∞],{0,∞}.

C∗ algebras are often viewed as non-commutative topological spaces, vN

algebras are non-commutative measure spaces.

3 / 16



Key observation

For N ≤M a subfactor, P(N) is a complete sub-OL of P(M).

∃x

∀x

x

P(N)

P(M) ∃x = least in P(N) above x

∀x = largest in P(N) below x

This is familiar from (classical) logic.
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Monadic algebras

Definition A quantifier on a ba B is a map ∃ ∶ B→ B where

(Q1) ∃0 = 0,

(Q2) p ≤ ∃p,

(Q3) ∃(p ∨ q) = ∃p ∨ ∃q,

(Q4) ∃∃p = ∃p,

(Q5) ∃(∃p)⊥ = (∃p)⊥.

A monadic algebra (B,∃) is a ba B with a quantifier ∃.

Note: (Q1) – (Q5) are equivalent to (Q1), (Q2), (Q6) where

(Q6) ∃(p ∧ ∃q) = ∃p ∧ ∃q.
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Quantum monadic algebras

Definition An ol is a bounded lattice L with unary operation ⊥ where

(O1) x ∧ x⊥ = 0

(O2) x ∨ x⊥ = 1

(O3) x ≤ y⇒ y⊥ ≤ x⊥

(O4) x⊥⊥ = x

It is an oml if it additionally satisfies

(O5) x ≤ y⇒ x ∨ (x⊥ ∧ y) = y

Monadic ols are ols with a quantifier ∃ satisfying (Q1) – (Q5).

Quantum monadic algebras are monadic ols that are omls.

Abbreviation: q-monadic algebras.
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Basic examples

Proposition If L is a complete ol and C ≤ L is a complete subalgebra,
then ∃x = ⋀{c ∈ C ∶ x ≤ c} is a quantifier and (L,∃) is a monadic ol.

Note: All complete monadic ols are obtained in this way.

Example If L is a complete oml and B is a maximal Boolean subalgebra
of L (such is called a block), then B ≤ L is a complete subalgebra. So
each block of a complete oml yields a q-monadic algebra.
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Examples of quantum monadic algebras

Example If N ≤M then P(N) ≤ P(M) yields a q-monadic algebra.

Example A von Neumann algebra M is specified to Jordan isomorphism
by the q-monadic algebra P(M) ≤ P(H).

Example A subfactor N ≤M gives P(N) ≤ P(M) a q-monadic algebra
that specifies this subfactor to Jordan isomorphisms.

Slogan Subfactors are non-commutative monadic algebras.
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Commuting squares

Theorem A subfactor N ≤M has a conditional expectation EN ∶ M → N

Note This generalizes conditional expectation from measure theory.

Definition Subfactors N ,K ≤M are a commuting square

N ∩K

N

K

M

if their conditional expectations EN and EK commute.

Commuting squares are well-known in subfactor theory. They are a
non-commutative version of independent σ-algebras.

Theorem EN and EK commute iff the quantifiers ∃M and ∃K commute.
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Cylindric algebras

Definition An I-dimensional cylindric algebra (B,∃i, di,j) is a ba B with
a family ∃i of unary operations and di,j of constants where

(C1) ∃i is a quantifier

(C2) ∃i∃jx = ∃j∃ix

(C3) di,j = dj,i and di,i = 1

(C4) if j ≠ i, k then di,k = ∃j(di,j ∧ dj,k)
(C5) if i ≠ j then ∃i(di,j ∧ x) ∧ ∃i(di,j ∧ x⊥) = 0

The ∃i are called cylindrifications and the di,j are diagonals.

If we remove the dij we obtain a diagonal-free cylindric algebra.

(C5) ensures Sij x ∶= ∃i(dij ∧ x) is a substitution endomorphism.
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Cylindric algebras

The name comes from the following “cylindric set algebra”.

A

B = P(X2)
∃1A = the cylinder generated by A

Diagonals are usual diagonal ⊆ X2

Definition Cylindric ols are the corresponding structures with bas
replaced by ols and quantum cylindric algebras with omls.
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The quantum cylindric set algebra

This is closely related to Nik Weaver’s quantum logic.

Lemma For H1, . . . , Hn Hilbert spaces, each Mi ≤ B(H1 ⊗⋯⊗Hn) is a
vN subalgebra where

Mi = {1⊗A ∶ A ∈ B(⊗
j≠i

Hj)}

Diagonals If all Hi are the same, diagonal Dij is projection onto the

subspace of the tensor power H⊗n symmetric in the ith, jth coordinates.

Note This generalizes to infinite tensor products as well.
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The quantum cylindric set algebra

Proposition For Hi (i ∈ I) Hilbert spaces, the quantum cylindric set
algebra over ⊗I Hi is a diagonal-free q-cylindric set algebra.

Proposition The quantum cylindric set algebra with diagonals over the
tensor power H⊗ I satisfies (C1) – (C4) but not (C5).

Note The issue with (C5) seems related to difficulties with substitution in
Weaver’s quantum predicate calculus.

Note Some of the issues with (C5) are addressed by modifying the axiom
to use a Sasaki projection.
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Monadic orthoframes

Definition A relational structure (X,⊥, R) is a monadic orthoframe
if ⊥ and R are binary relations on X that satisfy

(M1) ⊥ is symmetric and irreflexive

(M2) R is reflexive and transitive

(M3) for each x ∈ X, the set R[{x}]⊥ is closed under R.

Proposition (X,≠, R) is a monadic orthoframe iff R is an
equivalence relation

Definition Set (X,⊥, R)+ = (L,∃) where

1. L is the complete ol of Galois closed subsets of (X,⊥).

2. ∃A is the Galois closure of R[A].
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Monadic orthoframes

Theorem Each (X,⊥, R)+ is a monadic ol. Each monadic ol is a
subalgebra of such. Each complete monadic ol is isomorphic to
such.

Definition (X,⊥, (Ri)I) is diagonal-free cylindric orthoframe if

(C1) Each (X,⊥, Ri) is a monadic orthoframe

(C2) Ri commutes with Rj for each i, j ∈ I

Theorem As above but realizing diagonal-free cylindric ols as
complex algebras of diagonal-free cylindric orthoframes.

Note There are many obstacles to providing similar results for
quantum monadic frames.
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The contents of this talk will appear in J. Physics A.

A preliminary version is on ArXiv.

There are further logical avenues to pursue, but my main focus is in
pushing the view of factors and subfactors from the order-theoretic
and geometric interpretation and potential generalizations.

Thank You!
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